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Abstract 
UAV-based 3D reconstruction has been used in various appli-
cations. However, mitigating the impact of outliers in auto-
matically matched points remains to be a challenging task. 
Assuming the availability of prior information regarding the 
UAV trajectory, this paper presents two approaches for reli-
able estimation of Relative Orientation Parameters (ROPs) in 
the presence of high percentage of matching outliers. The first 
approach, which assumes that the UAV platform is moving at a 
constant flying height while maintaining the camera in a nadir-
looking orientation, provides a two-point closed-form solution. 
The second approach starts from prior information regarding 
the flight trajectory to define a linearized model, which is aug-
mented with a built-in outlier removal procedure, to estimate 
a refined set of ROPs. Experimental results from real datasets 
demonstrate the feasibility of the proposed approaches in pro-
viding reliable ROPs from UAV-based imagery in the presence of 
a high percentage of matching outliers (up to 90 percent).  

Introduction
Accurate 3D modeling has become a key prerequisite for 
several applications, such as urban planning, archaeological 
documentation, environmental monitoring, disaster after-
math assessment, change detection, precision agriculture, 
and military applications. 3D reconstruction/representation 
of objects can be achieved through either active or pas-
sive remote sensing systems. Due to financial and technical 
constraints, passive sensor systems, which commonly use 
digital line/frame imaging sensors, are still an optimum op-
tion for various 3D reconstruction applications (Remondino 
and El-Hakim, 2006). Within the photogrammetric research 
community, automation of image-based 3D reconstruction has 
been investigated for decades. In order to derive high-quality 
3D reconstruction, conventional photogrammetric mapping 
requires the knowledge of the Interior Orientation Parameters 
(IOPs) of the utilized cameras, Exterior Orientation Parameters 
(EOPs) of the involved images, and corresponding points/fea-
tures within overlapping images. The IOPs can be derived from 
a camera calibration process (Fraser, 1997; Habib and Morgan, 
2003). The EOPs of the involved imagery can be either derived 
through an indirect or a direct geo-referencing process (Cra-
mer et al., 2000; Skaloud, 2002). For indirect geo-referencing, 
the image EOPs are indirectly established using tie and control 
points. However, the identification of reliable tie points and 
the set-up of control points are time-consuming and costly 
activities. In spite of the fact that the direct geo-referencing 
simplifies the derivation of the EOPs for each exposure station, 
significant initial investment for the acquisition of a high-end 
GNSS/INS Position and Orientation System (POS) is required, 
especially when seeking high level of reconstruction accu-
racy. For 3D reconstruction, whether it is based on indirect or 

direct georeferencing, we need to automatically identify con-
jugate points in overlapping images (this is commonly known 
as the matching problem). Image matching can be a chal-
lenging task when dealing with imagery that has poor and/or 
repetitive texture. Therefore, one can argue that the adoption 
of conventional photogrammetric mapping techniques for 
image-based 3D reconstruction, especially for some emerging 
applications such as precision agriculture, can be limited.

Large-area 3D reconstruction has been traditionally es-
tablished using manned-airborne data acquisition platforms. 
Unmanned Aerial Vehicles (UAVs) have recently emerged as 
a promising geospatial data acquisition system. This prom-
ise is mainly attributed to recent advances in low-cost direct 
georeferencing systems as well as imaging sensors operating at 
different portions of the electromagnetic spectrum. Compared 
to manned-airborne systems, the advantages of UAVs include 
their low-cost, ease of storage and deployment, ability to fly 
lower and collect high resolution data with consumer-grade 
cameras, and filling an important gap between wheel-based 
and manned-airborne platforms. To date, several research ef-
forts have been geared towards the use of UAVs for small-area 
mapping applications (He et al., 2015; He and Habib, 2014; 
Lari et al., 2015). Structure from Motion (SfM), which was initi-
ated by the computer vision research community, has been 
widely adopted for UAV-based 3D reconstruction. Similar to 
the procedure that has been adopted by the photogrammetric 
community for decades, SfM is implemented in three steps to 
simultaneously estimate the EOPs of the involved images and 
drive 3D coordinates of matched features within the overlap 
area (Hartley and Zisserman, 2003; Huang and Netravali, 
1994). In the first step, the relative orientation parameters 
(ROPs) relating stereo-images are initially estimated using auto-
matically identified conjugate point and/or line features. Then, 
a local reference coordinate system is established to define an 
arbitrary datum for deriving the image EOPs as well as 3D coor-
dinates of matched points. Finally, a bundle adjustment proce-
dure is implemented to refine the EOPs and object coordinates 
derived in the second step. The bundle adjustment procedure 
can achieve the best 3D reconstruction accuracy provided that 
we are utilizing sufficiently accurate approximations of the 
unknowns and correct feature correspondences (Stewenius et 
al., 2006). In this regard, one should note that accurate estima-
tion of the ROPs, which define the position and orientation 
of one image relative to another, is a prerequisite for any 3D 
reconstruction using SfM (Horn, 1990a). 

In the past few decades, recovery of the ROPs has been 
investigated within the photogrammetric and computer vision 

Lyles School of Civil Engineering, Purdue University, West 
Lafayette, IN 47906 (he270@purdue.edu). 

Photogrammetric Engineering & Remote Sensing
Vol. 82, No. 11, November 2016, pp. 879–891.

0099-1112/16/879–891
© 2016 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.82.11.879

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November  2016 	 879

08-16 November Peer Reviewed.indd   879 10/18/2016   11:23:59 AM



research communities (Habib and Kelley, 2001; Heipke, 
1997; Tang and Heipke, 1996; Zhang et al., 2011). In general 
scenarios, the IOPs of the utilized camera are usually assumed 
to be known. For a given stereo-pair, ROP estimation involves 
the derivation of five parameters, which include three rota-
tion angles and two translation parameters (i.e., an arbitrary 
scale is assumed for the ROP estimation procedure). The 
most well-known approach for ROP recovery is based on the 
co-planarity constraint (Mikhail et al., 2001), where a least-
squares adjustment is solved while using a minimum of five 
conjugate points. However, due to the nonlinear nature of the 
co-planarity model, approximate values for the unknowns, 
which are refined through an iterative process, have to be 
available. Establishing good-quality approximations can be 
challenging for situations where the mapping platform exhib-
its excessive maneuvers between the data acquisition epochs 
(e.g., close range mapping applications). To address such a 
challenge, several closed-form solutions, which do not require 
approximations, for ROP recovery have been developed, such 
as the eight-point and the five-point algorithms (Hartley, 1997; 
Longuet-Higgins, 1987; Nistér, 2004).

The abovementioned ROP recovery procedures are based 
on reliable conjugate point pairs in stereo imagery. However, 
illumination changes, induced occlusions by perspective 
geometry, and arising ambiguity from repetitive patterns 
will introduce outliers in automatically identified conjugate 
features. For robust ROP estimation, it is necessary to aug-
ment the relative orientation procedure with strategies for 
outlier removal. RANSAC (Random Sample Consensus) is a 
commonly-used strategy to filter out outliers during a model-
fitting procedure, in general, and ROP recovery, in particular 
(Fischler and Bolles, 1981). RANSAC works by conducting ran-
dom draws of the necessary samples for ROP estimation, i.e., 
five or eight hypothesized conjugate pairs for the five-point 
and eight-point algorithms, respectively, and identifying the 
compatible matches with the estimated parameters from the 
different draws. The draw that results in the largest consen-
sus is used together with the compatible matches to derive a 
reliable estimate of the ROPs. In spite of its potential, RANSAC 
would require an excessive number of trials when dealing 
with scenarios that require large samples and/or have high 
percentage of outliers. Moreover, RANSAC might fail to provide 
a set of matches that supports correct ROP recovery when 
there is a false hypothesis providing larger consensus. In ad-
dition to the traditional RANSAC approach for the five-point or 
eight-point algorithm, ROP recovery while considering prior 
information regarding the flight trajectory has been utilized 
to reduce the number of required conjugate pairs (Faugeras 
and Maybank, 1990; Ortin and Montiel, 2001; Scaramuzza, 
2011a; Scaramuzza et al., 2009). Such approaches, which 
were mainly initiated by the mobile robotics research com-
munity, assume the availability of some constraints on the 
system trajectory during data acquisition. ROP recovery while 
using fewer samples would require fewer trials to identify the 
largest consensus (Troiani et al., 2014). 

ROP recovery in the presence of prior information regard-
ing the system trajectory has been mainly focused on indoor 
and outdoor terrestrial mobile mapping systems. However, 
dedicated approaches for UAV-based mobile mapping while 
considering the possibility of having high percentage of outli-
ers are still missing. In this paper, we are introducing two 
approaches for the recovery of ROPs between stereo images 
captured by UAV-platforms in the presence of prior informa-
tion regarding the system trajectory. These approaches have 
the following characteristics:

•	The first approach assumes that the involved images 
are acquired by a UAV platform moving at constant 
flying height while operating a nadir-looking camera. 

Such constraints are considered to establish a two-
point closed-form algorithm for ROP recovery. This 
approach is integrated within a RANSAC framework for 
outlier removal.

•	The second approach assumes the availability of ap-
proximate values for the ROPs, which can be acquired 
from onboard consumer-grade navigation sensors. 
Then, The ROPs are iteratively estimated through a 
linearized co-planarity model with a built-in outlier 
detection/removal process.

•	Since both approaches are coupled with a built-in out-
lier detection/removal process, they can deal with ROP 
recovery, where the initial point correspondences are 
contaminated with a high percentage of outliers.

This paper starts with a literature review of related work, 
which is followed by the mathematical details of the two 
proposed approaches for ROP recovery in the presence of prior 
information for the system trajectory. Afterwards, experimental 
results using real datasets are presented. Finally, drawn con-
clusions and recommendations for future work are introduced.

Related Work
As mentioned earlier, several closed-form solutions, which do 
not require approximations for ROP recovery, have been devel-
oped. Motivated by the concept of the Essential matrix, which 
encapsulates the epipolar geometry relating stereo-images, 
an eight-point algorithm was proposed by Longuet-Higgins 
(1987) for recovering the structure of a scene from two views 
that have been captured by a calibrated camera. In spite of its 
simplicity, such eight-point algorithm does not consider the 
constraints among the nine elements of the Essential matrix 
(i.e., constraints should be imposed to consider the fact that 
those elements are defined by five independent parameters). 
Thus, it is criticized for its excessive sensitivity to noise in 
the image coordinates of conjugate point pairs as well as hav-
ing an object space that is almost planar. An improvement 
to the eight-point algorithm was proposed by Hartley (1997), 
where a coordinate normalization procedure is applied to 
bring the origin of the image coordinate system to the centroid 
of the involved points. Experimental results from Hartley’s 
work demonstrated that with image coordinate normalization, 
the performance of the eight-point algorithm is almost at the 
same quality as the iterative non-linear algorithm. Given that 
a minimum of five conjugate point pairs are needed for ROP 
recovery, several five-point algorithms have been proposed 
as alternatives to the eight-point algorithm (Faugeras and 
Maybank, 1990; Philip, 1996; Triggs, 2000). The most efficient 
five-point algorithm is the one proposed by Nistér (2004), and 
later improved by Stewenius et al. (2006). Compared to the 
original eight-point algorithms, the great advantage of five-
point algorithms is that they take into account the epipolar 
geometry to enforce constraints on the elements of the Essen-
tial matrix. Therefore, five-point algorithms can better handle 
noisy image measurements and planar scenes (Philip, 1998). 

Meanwhile, in recent years, motivated by the availabil-
ity of consumer-grade navigation systems, several research 
efforts have been exerted towards ROP recovery while taking 
advantage of prior information regarding the system trajectory 
during data acquisition. In the existing body of literature, one 
or more of the ROPs between the images of a stereo-pair are 
assumed to be known. Troiani et al. (2014) introduced a two-
point algorithm for estimating the translation components of 
the ROPs while relying on available rotation angles relating 
consecutive images from an Inertial Measurement Unit (IMU), 
which has been rigidly attached to a monocular camera. In 
this work, the translation parameters are linearly recovered 
using two point correspondences. Traditionally, three rotation 
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angles are needed to define the rotation matrix relating the 
images of a stereo-pair. Since a rotation matrix can be alter-
natively defined by a rotation angle around an axis in space, 
the relative rotation between stereo-images sharing the same 
axis of rotation, which is usually denoted reference direction, 
can be defined by a single parameter (Viéville et al., 1993). 
For such situations, several three-plus-one algorithms, which 
utilize three point correspondences and a known reference 
direction, have been developed as a substitute of the classi-
cal five-point algorithm (Kalantari et al., 2011; Naroditsky 
et al., 2012; Robertson and Cipolla, 2004). Prior information 
regarding the reference direction can be either derived from a 
detected vanishing point (Gallagher, 2005; Hartley and Zisser-
man, 2003) or using a gravity sensor onboard mobile mapping 
platforms, where the gravity vector becomes the reference 
direction. A recent three-point solution has been proposed by 
Fraundorfer et al. (2010). In their work, a simplified Essential 
matrix is estimated from three point correspondences using 
two known rotation angles, which are acquired from a Smart-
phone. Experimental results demonstrate that the proposed 
three-point algorithm can efficiently cope with planar scenes 
and even three collinear image points.

Additional geometric constraints regarding the system 
trajectory have been also considered for ROP recovery. For 
example, Ortin and Montiel (2001) assume that the platform’s 
movement is constrained to a horizontal plane, and the rota-
tion of the utilized camera is constrained to an axis orthogo-
nal to the plane of motion (i.e., the normal to the plane of mo-
tion defines the reference direction). Using such assumptions, 
they conclude that two corresponding points are enough for 
determining the ROPs relating a stereo-pair. Scaramuzza (2009 
and 2011b) demonstrates that the movement of wheel-based 
vehicles can be considered as locally circular and planar. As 
a result, a one-point solution with a single iteration outlier 
detection can be adopted. A comparison of the five, two, 
one-point algorithms incorporated within RANSAC for outlier 
removal has been conducted by Scaramuzza (2011a). Since 
the manipulation of stereo-images captured by UAVs in the 
presence of high percentage of outliers while considering 
prior information regarding the system trajectory has not been 
addressed, this paper is dedicated to addressing such scenario 
by presenting two alternative approaches.

Methodology for the Proposed Approaches
Current UAV-based mapping is usually executed according 
a mission plan while relying on a consumer-grade naviga-
tion sensor within the platform’s autopilot. Therefore, prior 
information, which describes the trajectory of the platform 
including the involved cameras, can be utilized to facilitate 
ROP recovery for stereo-images. In this research work, we as-
sume that such prior information can be either derived from a 
specific flight configuration (e.g., a UAV platform moving at a 
constant flying height while operating a nadir-looking camera) 
or established by a low-cost Micro-Electro-Mechanical-System 
(MEMS) integrated with a GPS unit onboard the UAV. In this 
section, the proposed approaches that take advantage of such 
prior information are presented. First, we introduce the con-
ceptual basis for ROP recovery while using the Essential ma-
trix. Then, a two-point approach integrated within RANSAC for 
outlier removal and reliable ROP estimation is presented. This 
approach is based on a specific flight configuration, where 
two rotation angles and one of the translation parameters are 
assumed to be zero. Then, a second approach, which is based 
on a linearized co-planarity model, is introduced. In this 
approach, the ROPs are iteratively updated through a built-in 
outlier detection strategy until a pre-defined stopping crite-
rion is satisfied. Both approaches can be used to determine an 

estimate for the ROPs using a set of initial matches, which con-
tain outliers. These matches could be based on a SIFT detector 
and descriptor that has been applied to stereo-images and 
using the Euclidean distances between the SIFT descriptors 
for the detected features in both images to identify potential 
matches (Lowe, 2004).

Conceptual Basis for the Essential Matrix
The Essential matrix E describes the epipolar geometry relat-
ing two corresponding points in a stereo-pair (Longuet-Hig-
gins, 1987). The Essential matrix is based on the co-planarity 
constraint, which is depicted in Figure 1. The co-planarity 
constraint mathematically describes the fact that an object 
point P, the corresponding image points, and the two perspec-
tive centers O1 and O2 of a stereo-pair must lie on the same 
plane (Equation 1). 

	
p T RT

p1 2
0⋅ ×( ) =

	 (1)

In this equation, p1 and p1 are two corresponding points, 
where p = (x, y, –c)T represents the image coordinates cor-
rected for the principal point offset and camera-specific 
distortions. In this research work, we consider the case that 
the stereo-images are acquired by two different cameras. The 
rotation matrix R, which is defined by three rotation angles ω, 
ϕ, and κ, describes the relative rotation relating overlapping 
images.  is the translation vector describing the baseline be-
tween the stereo-images, and it can be defined by three trans-
lation components (Tx, Tx, Tz). The cross product in Equation 
1 can be simplified using the skew-symmetric matrix T  in 
Equation 2. More specifically, the 3-by-3 matrix T  simplifies 
the cross product of two vectors to a matrix-vector multiplica-
tion. Using Equation 2, one can derive the expression for the 
Essential matrix as shown in Equation 3:
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The nine elements of the Essential matrix are defined by 
the five elements of the ROPs (three rotation angles and two 

Figure 1. The co-planarity model relating stereo-images.
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translation components). Therefore, there must be four addition-
al constraints that can be imposed on the nine elements of the 
Essential matrix E. Such constraints are explained as follows:
	 1.	 The Essential matrix has rank two. Therefore, its deter-

minant has to be zero as shown in Equation 4, which 
leads to what is known as the cubic constraint on the 
nine unknown parameters of the Essential matrix.

	 det(E) = 0	 (4)

	 2.	 The Essential matrix has two equal non-zero singular 
values, which leads to the trace constraint as repre-
sented by Equation 5. Given the rank of  , two indepen-
dent equations on the nine unknown parameters can be 
deduced from the equality in Equation 5 (Horn, 1990b).

	
EE E trace EE ET T− ( ) =

1
2

0
	

(5)

	 3.	 The nine elements of the Essential matrix can be only 
determined up to a scale, which provides the fourth 
constraint.

Considering these four constraints, one can conclude 
that a minimum of five-point-correspondence is sufficient 
to estimate the nine unknown parameters of the Essential 
matrix. Using five point correspondences, a system of five 
linear equations of the form in Equation 6 can be established. 
An efficient solution of the Essential matrix using five feature 
correspondences while considering the above constraints is 
provided by Nistér (2004). The derived Essential matrix  can 
then be used to derive the rotation matrix R and the transla-
tion vector  relating the stereo-images. Possible solutions for 
R and  from a given Essential matrix have been introduced 
by Horn (1990b) and Nistér (2004):

	

x x e x y e x c e y x e y y e y c e

c x e c
1 2 11 1 2 12 1 2 13 1 2 21 1 2 22 1 2 23

1 2 31 1

+ − + + −
− − yy e c c e2 32 1 2 33 0+ = 	

(6)

Two-Point Approach for Relative Orientation Recovery
This section introduces the proposed two-point approach for 
ROP recovery while considering prior information regarding 
the platform trajectory. First, the mathematical model that 
considers the geometric constraints arising from the assumed 
motion trajectory on the Essential matrix is introduced. Then, 
a closed-form solution, which utilizes two point correspon-
dences, is presented. Finally, the integration of the two-point 
algorithm within RANSAC for outlier removal is outlined.

Derivation of the Two-Point Approach
This approach is based on acquired imagery from a nadir-
looking camera onboard a UAV platform moving at a constant 
flying height. Within the robotics research community, this 
flight configuration is known as “planar motion,” where the 
platform’s motion is constrained to a horizontal plane, and 
the rotation of the image plane is constrained along an axis 
orthogonal to the horizontal plane (i.e., with a reference 
direction that coincides with the normal to the plane of mo-
tion). The UAV-based planar motion leads to two geometric 
constraints that can be used to reduce and simplify the ele-
ments of the Essential matrix. As can be seen in Figure 2, the 
geometric constraints lead to the following:
	 1.	 For a nadir-looking camera, the rotation angles ω and ϕ 

are assumed to be zero. 
Therefore, the relative rotation of the camera between 
the images of a stereo-pair is constrained to the rotation 
angle κ (i.e., heading);

	 2.	 For a planar motion along the horizontal plane, the TZ 
translation component is assumed to be zero.

Therefore, for a planar motion, the rotation matrix R and 
translation vector  relating the stereo-images can be ex-
pressed according to Equation 7, where κ is the rotation angle, 
and Tx and Ty are the translation components describing the 
horizontal planar motion of the UAV platform. The expres-
sions for R and  can be substituted into Equation 3. This 
substitution will lead to the simplified Essential matrix in 
Equation 8, where L1, L2, L3, and L4 are used to denote the four 
unknown parameters of the Essential matrix E. As can be seen 
in Equation 8, L1, L2, L3, and L4 are derived from three inde-
pendent parameters (Tx, Ty, and κ). Therefore, there should 
be one constraint relating the four elements of the Essential 
matrix. A closer inspection of the relationships between (L1, 
L2, L3, L4) and (Tx, Ty, and κ), one can introduce the constraint 
in Equation 9. 
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Given the simplified form for the Essential matrix that 
describes the relationship between conjugate points in stereo-
images captured under horizontal planar motion constraints, 
we will focus on establishing the closed-form solution of the 
proposed two-point approach. Using the simplified Essential 
matrix, one can expand the relationship between the image 
coordinates of conjugate points to the form in Equation 10, 
where the image coordinates of the conjugate points p1 and p2 
are represented by (x1, y1, –c1) and (x2, y2, –c2) after correcting 
for the principal point offsets and camera-specific distortions.

Figure 2. Stereo-images from a UAV platform equipped with a 
nadir-looking camera while moving at a constant flying height.
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At this stage, the ROP recovery should be concerned with 
coming up with an estimate of the four parameters (L1, L2, 
L3, L4) while observing the inherent constraint among these 
parameters, which is represented by Equation 9, and the 
fact that these parameters can be only determined up to an 
arbitrary scale. Therefore, two conjugate point pairs should 
be sufficient for deriving the simplified Essential matrix. The 
proposed closed-form solution for deriving the elements of 
the Essential matrix estimation starting from Equation 10 can 
be carried out as follows:
	 1.	 Given two conjugate point pairs, two linear equations, 

which can be represented using the matrix form in 
Equation 11, can be established.
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where, 

x y c1
1

1
1

1, , −( )  and x y c2
1

2
1

2, , −( )  are the image coordinates 

for the first conjugate point pair, and x y c1
2

1
2

1, , −( )  and 

x y c2
2

2
2

2, , −( )  are the image coordinates for the second 
conjugate 	point pair.

	 2.	 As can be seen in Equation 11, the L4×1 vector belongs 
to the null space of the A2×4 matrix, which has a rank 
of two and is comprised of the image coordinates of 
available conjugate point pairs. Therefore, the L4×1 vec-
tor can be derived through a linear combination of the 
basis vectors X

~
, and Y

~
 spanning the right null-space of 

the matrix A2×4. 
Assuming that the basis vectors X

~
, and Y

~
 are presented 

by the elements in Equation 12, L1, L2, L3, L4 can be 
derived through the linear combination in Equation 13, 
where α and b are two arbitrary scale factors. Since the 
Essential matrix is determined only up to an arbitrary 
scale, one can choose a value of 1 for the scale factor 
b. Thus, the Essential matrix can be expressed by the 
form in Equation 14 using the basis vectors spanning 
the right null space of the A2×4 matrix.

Using the expressions for L1, L2, L3, L4 in Equation 13 and the 
inherent constraint in Equation 9, one can derive the second 
order polynomial in the unknown scale factor  in Equation 
15. The second order polynomial in Equation 15 provides up 
to two estimates for the scale factor α. Thus, two Essential 
matrices might be derived. For a given Essential matrix, R and 
T can be recovered through either the introduced singular 
value decomposition (SVD) approach by Nistér (2004) or the 
proposed closed-form solution by Horn (1990b). As presented 
by Horn (1990b), a total of four possible solutions of the rota-
tion matrix R and translation vector  can be recovered from a 
single Essential matrix. Therefore, up to eight solutions for R 
and  can be derived from this approach. In order to identify 
the valid Essential matrix among the available solutions, two 
additional constraints can be utilized as follows:

•	The light rays connecting a derived object point and 
perspective centers should be on the same side of the 
baseline.

•	The derived object points should be below the camera 
stations.
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In summary, the proposed two-point approach assumes 
that the involved images are acquired from a nadir-looking 
camera onboard a UAV platform moving at a constant fly-
ing height. Therefore, the ω and ϕ rotation angles and the 
TZ translation component are assumed to be zero. Such 
prior flight information leads to the fact that a minimum of 
two conjugate point pairs can be used to derive the Essen-
tial matrix relating a stereo-pair through a closed form. In 
contrast to the two-point algorithm proposed by (Ortin and 
Montiel, 2001), where a non-linear optimization is adopted, 
the two-point approach introduced in this paper provides a 
direct solution for the Essential matrix without the need for 
any iterative optimization. Moreover, the proposed two-point 
approach can be used while having more than two conjugate 
point pairs. In this case, the matrix A as in Equation 11 is first 
generated using all conjugate point pairs. Then, the vectors 
X
~

, and Y
~

 corresponding to the two smallest singular values of 
the matrix A or the product ATA are evaluated and used to de-
rive the Essential matrix. One should note that the proposed 
two-point approach can deal with stereo pairs that have any 
heading angles and planimetric translation components. How-
ever, it cannot tolerate significant variations in the tilt angles 
as well as flying height between the stereo images.

RANSAC Implementation for Outlier Removal
Similar to previous five-point/eight-point algorithms for ROP 
recovery, the proposed two-point approach can be integrated 
within a RANSAC framework for outlier detection and re-
moval. More specifically, a random sample comprised of two 
conjugate point pairs is first drawn from potential matches 
and used to derive the Essential matrix E according to the 
procedure proposed in the previous section. To derive other 
matches that are compatible with such estimate of the Essen-
tial matrix (i.e., derive the corresponding inliers), the Samp-
son distance (Hartley and Zisserman, 2003), which is the first 
order approximation of the normal distances between a given 
conjugate point pair and the respective corresponding epi-
polar lines, is evaluated for the remaining potential matches. 
Such a sampling-and-testing procedure is repeated until a 
required number of trials/draws is achieved. The required 
number of trials, which is based on an assumed percentage of 
inliers, is derived according to a probabilistic basis to ensure 
that at least one correct draw has been executed as seen in 
Equation 16. Finally, the random sample with the highest 
number of inliers is selected and used for ROP estimation. In 
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order to evaluate the computational efficiency of the proposed 
two-point approach when coupled with RANSAC for outlier 
removal in contrast to three, five, and eight point algorithms, 
the required number of trials N is presented in Table 1 (where 
ε is assumed to be 0.5 and the probability of having at least a 
single two correct conjugate point pairs within these trials is 
set to 0.99). As can be seen in Table 1, the required number of 
RANSAC trials is significantly reduced by using fewer number 
of conjugate point pairs. Therefore, the proposed two-point 
approach with a built-in RANSAC outlier detection/removal 
process is advantageous when compared with other ap-
proaches that require larger number of conjugate point pairs.

	
N
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−
− −

log
log

( )
( ( ) )

1
1 1 ε 	

(16)

where s is the minimum number of required conjugate point 
pairs for ROP estimation; ε is the probability of choosing an 
incorrect conjugate point pair, which is equivalent to the ratio 
between the assumed number of incorrect conjugate point pairs 
and the total number of potential conjugate point pairs; (1 – ε)s 
is the probability of having  correct conjugate point pairs in a 
single draw, and p is the probability of having at least a single 
sample comprised of  correct conjugate point pairs.

Table 1. Number of RANSAC Trials for Different Sample 
Sizes of Conjugate Point Pairs

Number of required  
conjugate point pairs (s) 2 3 5 8

Number of Trials (N) 16 35 145 1,177

Iterative Approach for Relative Orientation Recovery
This approach starts from the co-planarity model while as-
suming the availability of prior information regarding the 
platform trajectory between the images of a stereo pair. The 
platform trajectory could be available from a designed mis-
sion plan and/or a consumer-grade GNSS/INS unit onboard the 
UAV. The co-planarity model is simplified to a linear equation 
involving the corrections to the trajectory-based approximate 
values for the ROPs as well as the image coordinates of conju-
gate point pairs. The corrections are then used to refine the 
approximate ROPs. This process is iteratively executed while 
removing potential outliers through the iteration procedure 
until a convergence criterions is achieved.   

Mathematical Model
Given approximate values for the platform’s rotation matrix R 
and translation  between the images of a stereo-pair and as-
suming unknown incremental rotation and translation correc-
tions (δR and δT), the co-planarity model can be represented 
by Equation 17, which can be expanded to the form in Equa-
tion 18. Assuming that we have small deviations from the as-
sumed flight trajectory, the incremental rotation matrix δR can 
be represented by Equation 19. The individual terms in Equa-
tion 18 can be combined into the terms M1, M2, and M3 as seen 
in Equation 20. Since for the relative orientation, we can only 
estimate the translation vector up to an arbitrary scale, the 
correction to the translation component δTx can be set to zero. 
In this regard, one should note that setting  to zero implicitly 
assumes that the system trajectory is mainly aligned along the 
x-axis of the image coordinate system. Such assumption will 
limit the flight configurations that we can handle through this 
approach. The mitigation of such strict assumption will be 
discussed later in this section. Using the assumptions of small 
deviations from the given trajectory as well as having a flight 
trajectory that is mainly aligned along the x-axis, Equation 
20 can be expanded to the form in Equation 21 after ignoring 

2nd order correction terms (e.g., ΔωδTy are assumed to be very 
small and set to zero). In Equation 21, Δω, Δϕ, Δκ, δTy, and δTz 
are the unknown incremental corrections to the approximate 
ROPs. Given five or more conjugate point pairs, one can derive 
a Least Squares Adjustment (LSA) – based closed form for the 
estimation of the unknown corrections, which can be used to 
derive refined estimates for the relative rotation and transla-
tion between the images of a stereo pair as seen in Equation 
22. The refined parameters can be then used as a better esti-
mate of the ROPs and an iterative procedure is applied until a 
convergence criterion is met. The question that arises at this 
stage is how to employ this procedure while not restricting 
the flight trajectory to the x-axis and providing the capability 
of outlier removal through the iteration process. The possibil-
ity of doing so is discussed in the next section.

	
p T T RRp1 2 0T ˆ ˆ+( ) =δ δ

	
(17)

where p1 = (x1, y1, –c1)T and p2 = (x2, y2, –c2)T are the image 
coordinates of a conjugate point pair corrected for principal 
point offsets and camera-specific distortions, T  is the 3-by-3 
skew-symmetric matrix comprised from the approximate val-
ues for the translation parameters Tx, Ty, and Tz, δT  is a 3-by-3 
skew-symmetric matrix comprised from the unknown correc-
tions δTx, δTy, and δTz to the approximate translation vector, 
R is the approximate rotation matrix, which is defined by 
the approximate angles ω, ϕ, and κ derived from the assumed 
flight trajectory, and δR describes the unknown incremental 
rotation matrix, which is defined by the incremental angles 
Δω, Δϕ, and Δκ, that should be applied to the approximate 
rotation matrix to represent the true rotation between the im-
ages of the stereo-pair.
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Proposed Iterative Procedure with Outlier Detection/Removal
Our objectives in this section is to extend the application of 
the second approach to any type of flight trajectory while 
providing the capability of removing outliers through the 
iterative parameter refinement procedure. Both objectives can 
be achieved by working with normalized image coordinates 
of the available conjugate point pairs according to epipolar 
geometry rather than the original image coordinates. More 
specifically, using the approximate estimates for the ROPs at a 
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given stage, one can derive normalized image coordinates ac-
cording to epipolar geometry by having the image planes par-
allel to the base line connecting the perspective centers of the 
stereo pair in question while having the -axis parallel to the 
baseline (Cho et al., 1993). Such transformation will ensure 
that for the normalized image coordinates, the flight trajec-
tory is always aligned along the -axis of the image coordinate 
system. Moreover, the normalized image coordinates for the 
conjugate point pairs are expected to have a small y-parallax 
(theoretically, the y-parallax should be zero given the avail-
ability of noise free coordinates for true conjugate point pairs 
and correct ROP values), which could be used as a criterion for 
outlier removal. 

For the relative orientation, the rotation matrix  defines 
the rotational relationship between the right and left image 
coordinate systems of the stereo-pair in question; this rotation 
matrix can be defined as Rl

r. Using the approximate compo-
nents for the translation vector (Tx, Ty, Tz), one can derive 
a rotation matrix Rn

l  that relates the left camera coordinates 
system to the normalized camera coordinate system i.e., the 
one whose xy-plane is parallel to the baseline with the x-axis 
aligned along the baseline (Cho et al., 1993). Using such a 
rotation matrix, one can derive the normalized coordinates for 
the conjugate point pairs as shown in Equations 23 and 24, 
where cn = 0.5(c1 + c2).
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The normalized image coordinates for the available con-
jugate point pairs can then be used in Equation 21 to derive 
a refined estimate for the ROPs relating the two images of the 
stereo-pair in question. Before using all the available conju-
gate point pairs, one could filter conjugate point pairs that ex-
hibit large y–parallax. Moreover, additional constrains could 
be applied on the x–parallax  values to remove more potential 
outliers. The first one is that the x–parallax should be always 
larger than zero (i.e., the corresponding object point should 
be below the base line). In addition, having prior information 
about the flying height above ground, we can impose another 
constraint using the approximate guess of the expected x–
parallax  as seen in Equation 25. Thus, the normalization of 
the image coordinates for the conjugate point pairs provide 
reliable information for removing potential outliers during the 
iterative ROP refinement process. At this stage, we should note 
that the estimated ROPs using the normalized image coordi-
nates are based on the normalized camera coordinate system 
as defined by the orientation of the baseline in space (i.e., we 
will be estimating Tnormalized&Rln

rn). One can derive the updated 
ROPs relative to the original left camera coordinate system us-
ing Equation 26. For the iteration stopping criterion, one can 
use the variations of the refined ROPs between two successive 
iterations (i.e., we stop the iterations whenever no significant 
change is observed between two successive estimates of ω, ϕ, 
κ, and Tx, Ty, and Tz)
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where, cn is the principal distance of the normalized images, 
B is the approximate length of the baseline, and H is the ap-
proximate flying height above ground.
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In summary, the proposed iterative approach starts from a 
linearized co-planarity model while assuming the availability 
of prior information regarding the system trajectory, which 
could be furnished by a consumer-grade GNSS/INS unit onboard 
the mapping platform or the predefined flight plan. For this 
approach, the image coordinates are normalized according to 
epipolar geometry to meet the underlying assumption of hav-
ing the trajectory mainly aligned along the x-axis of the image 
coordinate system as well as providing additional constraints 
to help in the removal of potential outliers among available 
conjugate point pairs. One should note that such iterative ap-
proach can deal with stereo pairs that have any tilt angles and 
vertical translation component for stereo-images. However, 
sufficiently accurate initial approximations are required.

Experimental Results
The main objective of the experimental results is illustrat-
ing the feasibility of the proposed approaches in estimating 
the ROPs between the constituents of stereo-pairs captured by 
either multi-rotor or fixed-wing UAVs in the presence/absence 
of a stabilizing gimbal for the used digital cameras. In other 
words, the UAVs are chosen to test the ability of the proposed 
approaches in handling significant variation from their un-
derlying assumptions (i.e., the images are acquired with the 
camera’s optical axis pointing in the vertical direction and at 
the same flying height). The experimental datasets are picked 
in such a way that the tested stereo-pairs cover areas that are 
conducive to both high and low percentage of matching outli-
ers. Three real datasets, which are captured by a multi-rotor 
DJI Phantom2 UAV with a GoPro Hero 3+ Camera (Datasets 1 
and 2) and a fixed-wing PrecisionHawk UAV equipped with 
a Nikon J1 digital camera (Dataset 3), are used in the experi-
mental results. The internal characteristics of the GoPro and 
Nikon digital cameras are estimated through a calibration pro-
cedure similar to the one proposed by He and Habib (2015). 
For the multi-rotor UAV, the GoPro camera is mounted on a 
gimbal to ensure that images are acquired with the camera’s 
optical axis pointing in the nadir direction. For the fixed-wing 
UAV, the Nikon J1 camera is rigidly fixed to its body. Thanks 
to the stabilizing gimbal, successive images captured by the 
multi-rotor UAV along the same flight line can be assumed to 
comply with the assumptions of the two-point algorithm. On 
the other hand, successive images captured by the fixed-wing 
UAV in a given flight line are expected to show significant de-
viations. For both platforms, stereo-images from neighboring 
flight lines are also expected to show significant deviations 
from being almost vertical and at the same flight height. The 
first and second datasets are captured by the multi-rotor UAV 
over a building with complex roof structure and a crop field 
with repetitive texture, respectively. The third dataset is cap-
tured by the fixed-wing UAV over the crop field as well. The 
main characteristics of these datasets are described below.

•	Dataset 1 is comprised of 87 images along four strips 
that are captured from a flying height of roughly 20 
meters with the multi-rotor UAV moving at a speed of 
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roughly 4 m/s. The overlap and side lap percentages for 
the acquired images are approximately 80 percent and 
60 percent, respectively.

•	Dataset 2 includes 470 images acquired from 8 flight 
lines with an 8 m/s speed of the multi-rotor at a flying 
height of almost 15 meters. The overlap and side lap 
ratio among the acquired images are almost 60 percent.

•	Dataset 3 has 427 images, which are captured by the 
fixed-wing UAV while moving at a speed of roughly 20 
m/s at a flying height of almost 55 meters. The overlap 
and side lap percentages for the acquired images are 
approximate 60 percent.

To illustrate the feasibility of the proposed approaches, 
we conducted several experiments with stereo-pairs that are 
captured along the same and neighboring flight lines. The ROP 
estimates from the proposed approaches are compared with 
those derived from manually-identified tie points (for some 
stereo-pairs) as well as estimated ROPs from a bundle adjust-
ment procedure (for all the stereo-pairs within the different 
blocks).  In this comparison, we also evaluated the perfor-
mance of the Nistér five-point approach. A possible strategy 
for evaluating the closeness of the derived ROPs from different 
approaches is simply reporting the differences in the rota-
tion and translation components of the estimated parameters. 
The main disadvantage of such strategy is ignoring possible 
correlations among the ROPs (i.e., in spite of having significant 
differences between the individual values for the ROPs, the 
accumulated effect of such parameters could be quite similar). 
In order to account for such correlation, the derived param-
eters from two different approaches are compared through 
a similarity analysis, which provides a single estimate in 
image-space units reflecting the closeness of the two ROP sets. 
Inspired by Habib et al. (2014), the proposed comparison, 
which is graphically illustrated in Figure 3, starts by defining 
a synthetic regular grid in the left image of a stereo-pair. Then, 
a set of 3D object points within a pre-defined elevation range, 
which is compatible with the Base/Height ratio for the tested 
stereo-pair, are simulated from the light rays connecting the 
perspective center and the synthetic grid vertices in the left 
image: see Figure 3a. The simulated 3D object points are back-
projected onto the right image using the two ROP estimates that 
are being compared: see Figure 3b. Differences in the ROPs will 
cause discrepancies between the coordinates of corresponding 
vertices along the right image as seen in Figure 3b. The degree 
of similarity between such ROPs (e.g.,  and ) can be quantita-
tively evaluated through the Root Mean Squared Error (RMSE) 
of the discrepancies between the corresponding vertices.

Figure 4 illustrates six stereo-pairs along the same 
flight line: Figures 4a, 4b, and 4cfor Datasets 1, 2, and 3, 

respectively; and from neighboring flight lines: Figures 4d, 4e, 
and 4f for Datasets 1, 2, and 3, respectively. For each of these 
stereo-pairs, we manually measured ten tie points that are used 
in the non-linear coplanarity model to derive the ROPs, which 
will be denoted here forth as the “true ROPs.” The manually-
measured tie points and automatically-derived matches from 
the SIFT operator and descriptor (Lowe, 2004) are then used in 
the proposed approaches to derive ROP estimates, which will 
be compared with the true ones. In addition to the ROP com-
parison with those derived from the coplanarity model using 
manually identified tie points, we also compared the estimated 
ROPs from the different approaches with the derived ROPs from 
the bundle adjustment estimates of the Exterior Orientation 
Parameters (EOPs). More specifically, the derived EOPs from the 
proposed SfM approach in He and Habib (2014) are used to 
estimate the ROPs between all the stereo-pairs within a given 
image block; such ROPs will be denoted here forth as “Bundle 
Adjustment-based ROPs” or “BA-based ROPs.” One should 
note that the utilized SfM procedure incorporates a hybrid 
approach for the estimation of the ROPs for all the stereo-pairs 
within a block prior to the BA procedure. The hybrid approach 
starts with the two-point procedure whose output is used as 
initial values for the iterative five-point one. The SfM refines 
the derived ROPs from the hybrid approach through tie point 
tracking, rejecting incompatible ROPs, and utilizing a global 
bundle adjustment procedure that removes more matching 
outliers. Table 2 reports the number of stereo-pairs with base-
lines aligned along/across the flight direction for the different 
datasets. In order to assess the quality of the BA-based ROPs, 
the reconstructed surfaces from the SfM procedure are either 
compared with an overlapping laser scanning data or surveyed 
ground control points. More specifically, for Dataset 1, the SfM 
sparse point cloud is registered to a terrestrial laser scanner 
dataset using the proposed ICPatch strategy in Habib et al. 
(2010). The derived RMSE value of the discrepancies between 
the laser-based and SfM point clouds following the registra-
tion process is almost 3 cm, which demonstrates the accuracy 
of the BA-based ROPs. For Datasets 2 and 3, the datum for the 
SfM-based bundle adjustment is defined by ten Ground Control 
Points. The derived RMSE values for 18 Check Points, which 
are incorporated within the SfM-based bundle adjustment, for 

Figure 3. (a) Synthetic grid and simulated 3D object points, and (b) discrepancies between corresponding back-projected points using 
two ROP sets.

Table 2. Number of Stereo Pairs with Baselines Aligned Along/Across the 
Flight Direction for the Different Datasets

Dataset
Number of stereo-pairs 

along the flight direction
Number of stereo-pairs 

across the flight direction

1 171 121
2 932 961
3 1,331 1,384
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the two datasets are 5 cm and 4 cm, respectively. These RMSE 
values also confirm the accuracy of the BA-based ROPs. There-
fore, the BA-based ROPs can be used as a basis for evaluating the 
quality of the derived ROPs from the different approaches.

As already mentioned in the Methodology Section, the 
proposed two-point and the Nistér five-point approaches do 
not require approximate values for the ROPs. For the proposed 
iterative-approach, on the other hand, we have to specify 
initial values for the ROPs. For the captured datasets by the 
multi-rotor UAV (Datasets 1 and 2), the initial values are esti-
mated based on the designed flight plan. For the fixed-wing 
UAV (Dataset 3), we used the outcome from the two-point 
algorithm to initialize the iterative five-point approach. The 
different treatment for Dataset 3 is based on the fact that 
significant deviations from the flight plan should be expected 
when working with a rigidly-fixed camera to the UAV body.

Results and Discussion
For the stereo-based test, Table 3 reports the true ROPs, i.e., 
those derived from the manually-identified tie points through 
the non-linear coplanarity model as well as the initial values 
for the proposed five-point iterative approach. Since the ROPs 
can be only determined up to an arbitrary scale, either the 
Tx or Ty translation component is normalized to 1 depending 
on the baseline direction. Table 4 presents the differences 
between the estimated ROPs (i.e., those derived from the 
two-point, the iterative five-point, and the Nistér five-point 
approaches) and the true ROPs. More specifically, Rows 1, 
2, and 3 for each stereo-pair present the absolute rotation 
and translation errors for the derived ROPs when using the 
manually-measured tie point coordinates in the different 
approaches (i.e., the two-point, iterative, and Nistér five-
point approaches). Rows 4 and 5, on the other hand, show 
the errors associated with derived ROPs from the proposed 

Figure 4. (a, b, and c) stereo-pairs with baseline aligned along the flight direction in Datasets 1, 2, and 3, and (d, e, f) stereo-pairs with 
baseline aligned across the flight direction from Datasets 1, 2, and 3.
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Table 3. True ROPs from the Non-Linear Coplanarity Model while Using the Manually-Identified Tie Points and Initial Values for the Iterative Five-Point 
Approach for the Stereo-Based Tests (* Indicates that the Outcome from the 2-Point Approach is Used to Initialize the Iterative 5-Pint Procedure)

Test ROP Values ω ° ϕ° κ° Tx Ty Tz

Stereo-1-along
True (Manual) 0.25 0.14 0.59 -0.48 1.00 0.20

Initial (Iterative) 0.00 0.00 0.00 -0.50 1.00 0.00

Stereo-1-across
True (Manual) -13.66 4.72 179.61 1.00 0.85 -0.13

Initial (Iterative) 0.00 0.00 180.0 1.00 0.80 0.00

Stereo-2-along
True (Manual) 0.47 0.33 -0.26 0.02 1.00 0.03

Initial (Iterative) 0.00 0.00 0.00 0.00 1.00 0.00

Stereo-2-across
True (Manual) 0.57 0.14 178.52 1.00 0.02 0.02

Initial (Iterative) 0.00 0.00 180.0 1.00 0.00 0.00

Stereo-3-along
True (Manual) -1.93 11.31 12.59 -0.13 1.00 0.12

Initial (Iterative*) 0.00 0.00 13.31 -0.29 1.00 0.00

Stereo-3-across
True (Manual) 4.87 4.38 -89.93 -1.00 0.44 0.30

Initial (Iterative*) 0.00 0.00 -89.22 -1.00 0.38 0.00

Table 4. Comparison between the Estimated and True ROPs for the Stereo-Based Tests

Tests Approaches |ω°| |ϕ°| |κ°| |Tx | (%) |Ty | (%) |Tz | (%)
No. of 

initial matches
No. of 
inliers

No. of trials/
iterations

S
te

re
o-

1-
al

on
g 2-Point + Manual 0.25 0.14 2.14 4% 0% 20% 10 7 24

Iterative+Manual 0.02 0.03 0.04 0% 0% 0% 10 10 3

Nistér + Mannual 0.21 0.28 0.15 1% 0% 0% 10 9 31

2-Point + SIFT 0.25 0.14 0.14 1% 0% 20% 4,894 4,344 58

Iterative + SIFT 0.21 0.15 0.66 0% 0% 0% 4,894 4,811 8

Nistér + SIFT 0.42 0.21 1.34 12% 0% 7% 4,894 4,794 6

S
te

re
o-

1-
ac

ro
ss

2-Point + Manual 13.66 4.72 7.05 0% 16% 13% 10 7 24

Iterative+ Manual 0.02 0.02 0.01 0% 0% 1% 10 10 4

Nistér + Mannual 0.27 0.19 0.24 0% 0% 0% 10 10 18

2-Point + SIFT 13.66 4.72 7.27 0% 16% 13% 1,822 742 104

Iterative + SIFT 1.06 3.30 1.13 0% 0% 0% 1,822 1,683 7

Nistér + SIFT 0.27 1.83 2.12 0% 1% 1% 1,822 1,525 16

S
te

re
o-

2-
al

on
g 2-Point + Manual 0.47 0.33 0.98 2% 0% 3% 10 6 43

Iterative+ Manual 0.00 0.00 0.01 1% 0% 0% 10 10 4

Nistér + Mannual 0.31 0.13 0.26 1% 0% 0% 10 9 32

2-Point + SIFT 0.47 0.33 3.42 2% 0% 3% 554 55 1,732

Iterative + SIFT 0.32 0.28 0.01 1% 0% 1% 554 78 10

Nistér + SIFT Stopped after 100,000 iterations

S
te

re
o-

2-
ac

ro
ss

2-Point + Manual 0.57 0.14 0.36 0% 2% 2% 10 6 27

Iterative+ Manual 0.04 0.02 0.05 0% 1% 2% 10 10 5

Nistér + Mannual 0.27 0.18 0.15 0% 1% 1% 10 8 53

2-Point + SIFT 0.57 0.14 2.08 0% 3% 2% 633 42 2,571

Iterative + SIFT 3.57 3.89 2.90 0% 1% 2% 633 62 33

Nistér + SIFT Stopped after 100,000 iterations

S
te

re
o-

3-
al

on
g 2-Point + Manual 1.93 11.31 0.72 16% 0% 12% 10 5 28

Iterative+Manual 0.20 0.02 0.18 2% 0% 1% 10 10 6

Nistér + Mannual 0.19 0.13 0.22 2% 0% 2% 10 8 47

2-Point + SIFT 1.93 11.31 0.64 16% 0% 12% 2,697 473 932

Iterative + SIFT 0.82 0.50 1.44 2% 0% 1% 2,697 1,104 4

Nistér + SIFT 1.64 0.92 0.11 1% 0% 1% 2,697 1,072 208

S
te

re
o-

3-
ac

ro
ss

2-Point + Manual 4.87 4.38 0.34 0% 5% 30% 10 6 13

Iterative+ Manual 0.26 0.16 0.13 0% 0% 0% 10 10 5

Nistér + Mannual 0.27 0.22 0.17 2% 0% 1% 10 9 26

2-Point + SIFT 4.87 4.38 0.71 0% 6% 30% 2,188 260 2,561

Iterative + SIFT 0.15 1.32 1.49 0% 0% 1% 2,188 701 6

Nistér + SIFT 20.99 1.85 182.8 200% 24% 0.01 2,188 632 453
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approaches while incorporating the automatically-identified 
conjugate point pairs through the SIFT operator and descrip-
tor. Finally, Row 6 provides the ROP errors for the Nistér five-
point approach. In Table 4, one should note that the absolute 
translation errors are presented as an error percentage since 
the translation components are normalized according to the 
baseline direction. Table 4 also reports the number of input 
matches (manually-based or SIFT-based tie points), the identi-
fied conjugate point pairs by the ROP procedure, and the num-
ber of trials/iterations performed by the different approaches 
in Columns 9, 10, and to 11, respectively. The RMSE similarity 
values, which describe the closeness of the different ROPs to 
the true ones, are illustrated in Table 5.

For the block-based tests, Table 6 reports the statistics of 
the differences between the estimated ROPs from the two-point 
or the iterative five-point approaches and the BA-based ROPs. 
More specifically, Rows 4 through 9 present the RMSE values 
for the rotation and translation differences for the three da-
tasets while considering different configurations (i.e., stereo-
pairs with baseline aligned along/across the flight direction). 
Rows 10 through 15, on the other hand, present the maximum 
rotation and translation errors. Finally, Table 7 introduces 
the statistics of the RMSE similarity values, which are derived 
from the proposed similarity analysis, for all the stereo-pairs 
in the three datasets.

Based on the reported results for the stereo-based and 
block-based tests, the following observations can be made:

•	The absolute difference and similarity-based RMSE val-
ues give compatible judgment regarding the closeness 
of the estimated ROPs from the different approaches and 
the true or BA-based ROPs. This can be clearly seen in 
the reported differences and RMSE similarity values in 
Tables 4 through 6 and 5 through 7, respectively. This 
is an indication that there is no correlation among the 
estimated ROPs (i.e., sufficiently strong geometry of tie 
points is inherent within all the involved stereo-pairs).

•	The proposed approaches are capable of handling 
expected variations from the assumed flight plan and 
stereo-configurations when dealing with stereo-pairs in 
different flight lines and/or captured stereo-pairs along 
the same flight line by digital cameras that are rigidly-
fixed to the UAV body which is the case for Dataset 3.

•	Comparing the two-point, the iterative five-point, and 
the Nistér five-point approaches, the iterative five-point 
approach resulted in the closest ROPs to the true and 
BA-based ROPs.

•	When dealing with stereo-pairs that exhibit significant 
variations from being captured at the same flying height 
with the camera in a nadir looking configuration, the 

Table 5. RMSE Similarity Values between the Estimated and True ROPs for the Stereo-Based Tests

ROP1 & ROP2

RMSE for 
Stereo-1-along

(pixel)

RMSE for 
Stereo-1-across

(pixel)

RMSE for 
Stereo-2-along

(pixel)

RMSE for 
Stereo-2-across

(pixel)

RMSE for 
Stereo-3-along 

(pixel)

RMSE for 
Stereo-3-across 

(pixel)

True & 2-Point + Manual 42.13 215.13 29.81 30.09 341.13 243.07

True & Iterative + Manual 1.01 1.07 2.67 7.21 16.02 8.31

True & Nistér + Manual 9.82 11.35 15.86 16.97 33.52 16.23

True & 2-Point + SIFT 21.79 219.68 51.14 67.33 320.11 251.08

True & Iterative + SIFT 12.30 79.52 17.42 82.51 54.61 37.11

True & Nistér + SIFT 32.07 63.73 N/A N/A 65.47 N/A

Table 6. Comparison between the Estimated and BA-Based ROPs for the block-based tests

Dataset Dataset 1 Dataset 2 Dataset 3

Approach 2-Point Iterative 2-Point Iterative 2-Point Iterative

No. of Stereos
171-
along

121-
across

171-
along

121-
across

932-
along

961-
across

932-
along

961-
across

1,331-
along

1,384-
across

1,331-
along

1,384-
across

RMSE_Δω(°) 0.73 5.18 0.21 0.51 0.12 2.24 0.52 0.77 5.32 6.39 0.70 1.17

RMSE_Δϕ(°) 0.65 3.43 0.64 0.48 0.06 3.46 0.18 0.50 6.61 7.77 0.82 0.96

RMSE_Δκ(°) 0.69 4.25 0.33 0.57 0.83 1.35 0.21 0.36 5.90 5.30 0.31 0.66

RMSE_ΔTx (%) 1% 0% 1% 0% 2% 0% 0% 0% 16% 9% 6% 3%

RMSE_ΔTy (%) 0% 8% 0% 2% 0% 8% 0% 2% 0% 21% 3% 7%

RMSE_ΔTz (%) 11% 19% 0% 1% 3% 4% 1% 0% 13% 15% 4% 8%

Max_|Δω|(°) 2.63 13.66 1.21 2.97 0.30 3.30 1.46 3.07 12.33 13.84 1.71 2.31

Max_|Δϕ|(°) 3.79 4.72 0.79 2.05 0.18 3.85 0.98 1.81 15.22 19.04 2.23 1.79

Max_|Δκ|(°) 2.13 7.56 0.88 1.13 3.93 5.30 0.97 1.94 18.90 161.9 1.10 2.09

Max_ |ΔTx| (%) 11% 0% 5% 0% 8% 0% 2% 0% 47% 15% 1% 4%

Max_ |ΔTy|(%) 0% 12% 0% 6% 0% 17% 0% 9% 0% 51% 0% 5%

Max_ |ΔTz|(%) 21% 17% 6% 4% 5% 9% 5% 3% 32% 42% 1% 3%

Table 7. RMSE Similarity Values between the Estimated and BA-Based ROPs for the Block-Based Tests

ROP1 & ROP2

RMSE values for 
Dataset 1 (pixel)

RMSE values for 
Dataset 2 (pixel)

RMSE values for 
Dataset 3 (pixel)

Mean Std Max Mean Std Max Mean Std Max

BA-based & 2-Point + SIFT (along flight line) 10.01 19.83 136.27 8.50 14.61 87.37 115.06 125.79 346.62

BA-based & 2-Point + SIFT (across flight line) 82.31 85.69 361.08 65.34 68.27 225.16 134.57 166.13 392.15

BA-based & Iterative + SIFT (along flight lien) 5.28 7.11 73.71 4.44 6.61 69.68 21.54 31.01 87.31

BA-based & Iterative + SIFT (across flight line) 9.08 14.35 112.84 9.16 24.96 139.68 33.47 46.73 144.28
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two-point approach results in larger differences from 
the true and BA-based ROPs (refer to the highlighted 
cells in Table 4 where the maximum ω and ϕ rotation 
angles are 13.66° and 11.31°, respectively, while the 
largest normalized Tz component is almost 0.30). The 
impact of such variations is clearly visible in terms of 
low percentage of accepted matches in the two-point 
approach (even when dealing with manually-measured 
tie points).

•	The iterative and Nistér five-point approaches exhibit 
similar performance when dealing with the stereo-
pairs that have high percentage of correct matches (e.g., 
those in Dataset 1). However, the Nistér five-point ap-
proach performs poorly when dealing with stereo-pairs 
contaminated by high percentage of matching outliers. 
Table 4 shows that for Datasets 2 and 3, the Nistér five-
point approach fails when the percentage of outliers 
reaches almost 90 percent and 60 percent, respectively.  

•	A hybrid approach that starts with the two-point ap-
proach and uses the estimated ROPs as initial values 
for the iterative five-point approach proved to be a 
good strategy when the stereo-pairs exhibit significant 
variations from the design plan, which is usually the 
case for UAV-based flights (e.g., wind conditions and the 
light-weight of the UAVs will lead to significant varia-
tions from the design plan and deviations from the 
assumption of the two-point algorithm).

Conclusions and Recommendations for Future Work
This paper presents two approaches for ROP estimation 
while dealing with UAV-based imagery. Both approaches take 
advantage of prior information regarding the flight trajectory, 
which can be derived from the designed mission plan and/or 
geo-referencing information from an onboard GNSS/INS unit. 
The first approach assumes that the UAV platform is mov-
ing at constant flying height while operating a nadir-looking 
camera (i.e., we are dealing with vertical images that have 
been captured from the same flying height). Starting from 
such assumptions, the nine elements of the Essential matrix 
relating conjugate points in overlapping images are reduced 
to four with an additional constraint among them. Given 
that the relative orientation can be only established up to an 
arbitrary scale, the four elements of the Essential matrix can 
be derived using a minimum of two point correspondences. 
This approach can be incorporated within a RANSAC frame-
work to remove potential outliers among the initial conjugate 
point pairs. Thanks to the fact that it only requires a mini-
mum of two parameters, fewer RANSAC trials will be needed 
when compared to existing five and eight point algorithms. 
The second approach starts with a linearization process of the 
co-planarity constraint starting from prior information regard-
ing the ROPs relating the stereo-pair in question to derive a set 
of linear equations in the unknown corrections to the ap-
proximate ROP values. A minimum of five conjugate pairs are 
required to derive an estimate of the ROPs through an iterative 
procedure until a convergence criterion is achieved. Thanks 
to the built-in normalization procedure according to epipo-
lar geometry, this approach can remove matching outliers 
by imposing constraints on the xy–parallax values. A com-
mon characteristics of both approaches is their ability to use 
more than the minimum number of required conjugate point 
pairs to provide an LSA-based estimate of the ROPs. Experi-
mental results have shown that both procedures are capable 
of providing accurate ROP estimates in the presence of high 
percentage of matching outliers, which could be the result of 
dealing with images that exhibit repetitive pattern. Although 
the iterative approach has shown better performance when 

compared with the two-point approach, the latter does not 
make any restrictions regarding the heading difference as well 
as the planimetric motion of imaging platform. However, this 
comes at the price that the two-point approach cannot toler-
ate significant variations from having vertical images that are 
captured at the same flying height. These characteristics lead 
to the fact that both approaches can be integrated in a hybrid 
strategy where the two-point procedure is utilized to provide 
initial ROP estimates, which could be then refined through the 
implementation of the iterative approach. Thus, the hybrid 
approach can deal with situations where prior information 
regarding the flight trajectory is not accurate; this should be 
expected when operating a light-weight UAV in relatively 
windy conditions. The evaluation of the integrated process 
on more UAV platforms will be the focus of future research. 
Moreover, since the proposed two-point approach imposes 
strict restrictions on ROPs to be estimated, other approaches 
that require less assumptions regarding the orientation of the 
utilized platform will be investigated for the automated rela-
tive orientation recovery of UAV-based imagery.
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